Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media.

نویسندگان

  • Zhelin Liu
  • Bo Zhao
  • Cunlan Guo
  • Yujing Sun
  • Yan Shi
  • Haibin Yang
  • Zhuang Li
چکیده

In this paper, raspberry hollow Pd nanospheres (HPNs)-decorated carbon nanotube (CNT) was developed for electro-oxidation of methanol, ethanol, and formic acid in alkaline media. The electrocatalyst was fabricated simply by attaching HPNs onto the surface of CNT which had been functionalized by polymer wrapping. The as-prepared HPN-CNTs (CHPNs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The increasing interest and intensive research on fuel cell inspire us to investigate the electrocatalytic properties of the prepared nanostructures. Besides that, previous reports about alkaline other than acidic media could supply a more active environment guide us to examine the electrocatalytic properties in alkaline electrolyte. It is found that this novel hybrid electrocatalyst exhibits excellent electrocatalytic properties and can be further applied in fuel cells, catalysts, and sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic study of ethanol and methanol electro-oxidation on Pd-vulcan XC-72R/Cu electrocatalyst in alkaline media

Abstract In this study , palladium nano-particles were electro deposited galvano - statically on carbon black powder (Vulcan XC -72R). The catalytic activity for electro - oxidation of ethanol and methanol in alkaline media were studied by cyclic voltammetry and linear sweep voltammetry techniques. The results indicated that the electro-oxidation of ethanol and methanol strongly depends o...

متن کامل

Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media

Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...

متن کامل

Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation

The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...

متن کامل

Palladium nanoparticles supported on carbon black powder as an effective anodic catalyst for application in a direct glucose alkaline fuel cell

Palladium nanoparticles supported on carbon black powder (Vulcan XC-72) nanocomposite (Pd/C) are synthesized as the catalyst for the anodic oxidation of glucose for use in a direct glucose alkaline fuel cell (DGAFC). Characterization of the catalyst is carried out using physical and electrochemical methods. It is observed that Palladium nanoparticles are uniformly dispersed onto the carbon blac...

متن کامل

Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid.

Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity toward...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 351 1  شماره 

صفحات  -

تاریخ انتشار 2010